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This study relates spatial measures of forest cover with measures of the spatial distribution of 
the population in the 31 Extractive Reserves (ERs) within the Amazon biome, Brazil, in 2010. We 
integrated layers of information on the ERs, forest cover, and spatial distribution of the population 
in a Geographic Information System. We produced 24 variables in three groups: population; 
external conditions (both as predictor variables); and land cover (predicted variables). We assessed 
the correlation between predictor variables and forest cover and fragmentation variables. Linear 
regression analyses based on cooperative game theory were conducted to evaluate the significance 
of the predictor variables in explaining the number of forest fragments and the percentage of 
forest cover in the models. We found that the size, concentration, dispersion, and geometry of the 
population contributed to a better understanding of deforestation and the landscape structure. 
However, forest fragmentation and forest cover extent are not necessarily defined by the same 
population aspects. The models suggest that forest cover change is primarily driven by population 
concentration within the ER, while forest fragmentation is strongly shaped by population dispersion. 
External conditions such as surrounding forests and protected areas also played a significant role. 
Our study highlights the importance of incorporating forest spatial distribution measures into 
Population and Environment research, going beyond the usual focus on forest extent. Additionally, 
it highlights the value of working with spatial demographic variables, extending beyond the 
conventional approach centered on population size. 
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Introduction

The Amazon Biome, renowned for its biodiversity and endemism, spans eight South 
American countries, with approximately 60% located in Brazil (RAISG, 2022). The forest plays 
a central role in carbon balance, rainfall regulation, and planetary climate maintenance, 
making Land Use and Land Cover Change (LUCC) in the region a globally significant 
phenomenon (Mitchard, 2018; Mu; Jones, 2022). The continuous forest conversion process 
intensifies impacts due to habitat loss and changes in landscape structure, as evidenced 
by forest cover reduction and fragmentation, i.e., isolated forest patches that disrupt forest 
ecosystem functions (Fahrig, 2017; Laurance et al., 2012).

In Brazil, after a period of relative control over deforestation rates in the early 21st 
century (Hansen et al., 2013), concerns about the destruction of the forest cover have 
resurfaced. Attacks on federal public monitoring and control agencies have weakened the 
management of protected areas (Begotti; Peres, 2019; Escobar, 2019). The vulnerability of 
these areas, particularly that resulting from human activity (Laurance et al., 2012), poses 
a serious problem as they are critical for the protection of biodiversity and forest cover in 
different countries (Bruner et al., 2001; Yang et al., 2021).

Brazil has one of the largest networks of protected areas in the world, especially those 
located in the Amazon: 357 Conservation Units and 387 Indigenous Lands covering more 
than 210 million hectares (IPAM, 2018; INPE, 2022; Brasil, 2022). The National System 
of Nature Conservation Units (SNUC) defines two types of conservation units: Integral 
Protection and Sustainable Use (Brasil, 2000). While residence is prohibited within integral 
protection units, such as national parks, traditional populations are allowed to reside in 
sustainable use units, such as Extractive Reserves (ERs) (Brasil, 2000, Article 2, item IX 
and XI). ERs aim at environmental conservation associated with resource management, 
consistent with Category VI of Protected Areas, as defined by the International Union for 
Conservation of Nature (Dudley, 2013).

According to estimates based on official data from the Brazilian Institute of Geography 
and Statistics (IBGE), the Amazon’s ERs were the federal conservation units with the largest 
population in 2007: 227,000 people lived within the reserves, accounting to 70% of the total 
residents in all federal conservation units, while 690,000 people lived in the surrounding 
area across a 10 km buffer zone (D’Antona et al., 2013). The ER model was first proposed 
by Chico Mendes, an environmentalist and social activist who advocated for the rights of 
traditional populations dependent on the rainforest for their livelihood. However, studies 
have identified deforestation processes associated with specific occupation dynamics, such 
as the introduction of livestock (Kröger, 2020; Spínola; Carneiro-Filho, 2019).

Studies examining the potential impact of populational spatial distribution patterns on 
forest cover within areas designated for environmental preservation are scarce. This study 
aimed to assess the influence of population size and spatial distribution on the extent of 
forest cover and fragmentation across all 31 ERs in the Amazon Biome in Brazil in 2010. 
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The hypothesis is that forest cover is not solely dependent on population size, but also 
influenced by the spatial arrangement of the population. Furthermore, we hypothesize that 
both population size and spatial distribution significantly affect forest fragmentation and 
the distribution of forest patches

The distinctive contribution of this study lies in the application of population spatial 
distribution measures comparable to those used in landscape ecology to analyze land 
cover (Metzger et al., 2021). In the field of Population and Environment studies, this article 
seeks to enhance the understanding of the relationship between population and forests by 
analytically integrating the spatial distribution of population into the model. This approach 
differs from conventional studies on population and land cover in the Amazon, which often 
prioritize population size and growth. Additionally, the research highlights the impact of 
population on forest spatial distribution, diverging from studies that traditionally prioritize 
forest extent over fragmentation.

Background

Deforestation in the tropics is a complex, multicausal and multiscale phenomenon 
(Magliocca et al., 2015), with anthropogenic forces recognized as key factors influencing forest 
change. Some probable causes of deforestation include the extension of infrastructure, such as 
roads, agricultural expansion, and colonization projects (Assunção; Chiavari, 2015; França et 
al., 2021; Milien et al., 2021; Perz et al., 2013; Yanai et al., 2020). While demographic factors 
are acknowledged as underlying driving forces (Lambin; Geist, 2006), they do not typically 
represent the primary drivers, usually categorized as control variables or associated with 
other deforestation drivers (Ferretti-Gallon; Busch, 2014). This observation stems from the 
fact that studies addressing the relationship between population and LUCC often yield results 
with limited convergence due to a high variability in association outputs, contingent upon the 
territorial unit of analysis or methodological framework (Côrtes; D’Antona, 2014).

Most studies, whether conducted at micro-level (focusing on households), or macro-
level (examining regional or continental perspectives), tend to analyze deforestation through 
the lens of population size, generally applying growth or density variables (Bremner et al., 
2010; Defries et al., 2010; Geist; Lambin, 2001; Jorgenson; Burns, 2007; Maja; Ayano, 
2021; Martin, 2023). In household life cycle studies, additional variables are incorporated, 
such as gender, age, and population mobility (Barbieri, 2023; Barbieri et al., 2021; Barbieri; 
Carr, 2005; Guedes et al., 2017; Perz et al., 2006; Walker et al., 2002; VanWey et al., 2007).

Patterns of deforestation linked to population spatial settlement have been discussed in 
the literature. Notable examples include the fishbone pattern, associated with colonization 
projects (Becker, 2001; De Filho; Metzger, 2006), as well as urbanization and expansion of 
urban patches (Browder; Godfrey, 1997; Côrtes; Silva Júnior, 2021). Although the spatial 
dimension is implicitly addressed in these approaches in various ways, none of them 
proposes to establish a relationship between spatial index measures and deforestation. 
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The methodological endeavor to incorporate the spatial dimension of population in land 
cover studies, rather than focusing solely on population size, has the potential to address 
the gap in the empirically established relationship between population distribution and 
forest spatial distribution. This also goes beyond the perspective focused solely on the 
extent of deforestation to analyze fragmentation.

In the field of landscape ecology, it is recognized that varying spatial and temporal patterns 
of deforestation result in specific configurations concerning the structure of the remaining 
forests and the intensity of these changes. When deforestation advances continuously, habitat 
loss occurs in large areas, but the contiguous forest can remain in other large areas. Forest 
fragments (isolated patches of forest remnants) are created when deforestation occurs in a 
dispersed manner (Metzger, 2001). Despite possible controversy over its effects (Fletcher et 
al., 2018; Fahrig et al., 2019), forest fragmentation is usually associated with negative impacts 
on animal and plant species (Martínez-Ramos et al., 2016). This phenomenon is related to fire 
events (Soares-Filho et al., 2012), as well as changes in the structure and composition of arboreal 
communities and reductions in tree diversity associated with the proliferation of invasive 
species (Laurance et al., 1998). These modifications reduce habitats and their continuities, 
and can impair the survival of animals, which ultimately compromises the existence of the forest 
itself (Terborgh et al., 2001; Dirzo et al., 2014).

The diverse combinations of deforestation patterns create landscape mosaics that affect 
the ecological functions of forests. Forest spatial distribution is mainly influenced by size, 
distance, and shape of forest fragments, which determine the extent of the fragment’s perimeter 
(Haddad et al., 2015; Metzger, 2001). Reductions in area, isolation and greater edge effect 
trigger persistent, deleterious, and often unpredictable ecosystem changes. A biodiversity 
loss of up to 75% is estimated, to the detriment of the landscape configuration via the forest 
fragmentation process, in addition to changes in ecosystem functions that reduce biomass and 
alter nutrient cycles (Haddad et al., 2015; Laurance; Vasconcelos, 2009).

In contrast, protected areas are considered the most important strategy for the 
conservation of forest resources (Bamford et al., 2014; Pfaff et al., 2015). Protected areas 
can be defined as social-ecological systems, within multi-scale social-ecological functional 
landscapes (Cumming et al., 2015). Several studies have demonstrated the effectiveness 
of these units for forest conservation compared to what occurs outside their boundaries 
(Holland et al., 2014; Miranda et al., 2014). Conservation units act as barriers to the 
expansion of the agricultural frontier in the Amazon, where they have an expressive portion 
of old-growth forests (Nolte et al., 2013; Ferretti-Gallon; Busch, 2014). Deforestation in 
protected areas in the Legal Amazon amounts to less than 10% of the total deforested 
area between 2002 and 2011 (Assunção; Chiavari, 2015). The average probability of 
deforestation occurring outside these units is 7 to 11 times higher than within them (Ricketts 
et al., 2010; Ferreira et al., 2005).

Access conditions to conservation units can be understood as barriers to occupation in 
the Amazon as Brazilian environmental legislation regulates resident presence. The forms 
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of occupation and activities performed determine the intensity and pattern of deforestation, 
which depend on the category of the conservation unit. Consequently, the highest rate of 
deforestation growth between 2002 and 2011 occurred in the sustainable use units, the 
least restricted areas, thus increasing the suppressed area by 150% (Assunção; Chiavari, 
2015). In a regional framework in which protected areas are influenced by the processes of 
human occupation and LUCC, ERs are particularly important for examining the relationship 
between population distribution and deforestation.

Data and methods

The data from ER (I), forest cover (II), and the spatial distribution of the resident 
population (III) in the Brazilian Amazon Biome in 2010 were incorporated into a Geographic 
Information System (GIS) built in ESRI-ARCMAP 10.8 software (Figure 1).

The boundaries of the 31 ER in the Amazon Biome were extracted from the official 
shapefile containing data for the 132 federal protected areas established in Brazil until 
2010 (ICMBIO, 2017). This group excluded ERs that do not properly correspond to the 
Amazon Biome: marine units and those located in transition areas to other biomes. 
A layer with a 10 km buffer zone around each extractive reserve (ER) was created. As 
there are spatially contiguous ERs, we eliminated the buffers overlapping the examined 
reserves to avoid data duplication. As some Ers are spatially contiguous to other types of 
conservation units and indigenous land, we calculated the percentage of buffer overlap 
to other types of adjacent protected areas.

We used the 2010 land cover data from TerraClass in raster format (INPE, 2013, 
2022). For forest fragmentation calculations, we reclassified the 15 original classes into: 
natural cover, anthropogenic use, and no information. The natural cover class included 
forest (unaltered or slightly altered arboreal vegetation); other non-forest vegetation 
formations (i.e., savannas); hydrography and others (sand bank and rocky outcrops). 
This grouping aims to prevent certain configurations, such as watercourses in the middle 
of forest masses, from being considered anthropogenic fragmentation. Consequently, 
forest fragments in our approach were defined by patches with original natural cover 
distinguished from neighboring units, using the limits of conservation units as an 
analytical limit while disregarding possible continuities of natural cover beyond the 
perimeter of the reserves.
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FIGURE 1 
Geographic Information System components
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We used an official statistical grid of the 2010 Demographic Census delimited 
according to the boundaries of the Amazon Biome in Brazil, totaling 4,208,891 regular 
1 km x 1 km cells containing the variable resident population and the variable rural or 
urban situation (IBGE, 2016). The statistical grid was created by IBGE using a hybrid 
approach (Bueno, 2016) that combines coordinates of households from the 2010 
Demographic Census with estimates from techniques like disaggregating census tract 
data and auxiliary information (e.g., land use and infrastructure distribution) to account 
for missing coordinates. A grid is an effective tool, as the size and regularity of cells 
enable spatial compatibility between demographic and environmental data. It aligns well 
with protected area boundaries and improves understanding of population distribution 
within them, facilitating the application of spatial statistical measures (Bueno; D’Antona, 
2016).

Variables

We calculated 24 continuous variables for each ER, the territorial unit of our 
analysis, organized into three variable groups: ER population; external conditions; and 
land cover in ER. Population and external conditions are predictor variables; the forest 
cover variables in the reserves are the predicted variables. 

Group 1, calculated based on the 120,521 cells corresponding to the boundaries of 
the 31 ERs, includes (Table 1): the number of cells (v1) and the resident population (v2); 
measures of population concentration (v3 to v7); measures of population dispersion 
(v8 and v9); and measurements of occupation shape (v10 to v13). The number of 
occupied cells (v3) expresses the quantity of cells with resident population greater than 
zero, while the proportion of occupied cells (v4) measures the relationship between 
the number of cells with population and the total ER cells. We utilized the Gini index 
as a sparsity measure for population spatial distribution, not for income: v5 includes 
occupied and unoccupied cells; v6 includes only cells with resident population greater 
than zero. The index is expressed as a numerical percentage equivalence, ranging from 
0 to 1, where 0 corresponds to complete equality (homogeneous population distribution 
in all cells), and 1 corresponds to the maximum concentration (all people in one cell). 
Population Density (v7) measures the ratio between population size and the total 
number of cells corresponding to the ER.

The cells of each ER were classified into two classes: cells with resident population and 
cells without resident population. We aggregated contiguous cells of each class (Dissolve 
command in the ArcGIS), creating new polygons: patches of occupied cells and patches of 
unoccupied cells. The patches of occupied cells were exported to the Fragstats software 
(McGarigal, 1995) to calculate the following: number of patches of occupied cells (v8); 
median size of patches of occupied cells (v9); mean shape index of patches of occupied 
cells (v10). A higher number of patches of occupied cells (v8) indicates a more fragmented 
Reserve occupation. The larger the median patch size (v9), the greater the number of 
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contiguous cells with human occupation. The closer the mean shape index (v10) is to 1, 
the more square-like the patches of occupied cells; the further away from 1, the greater 
the difference in patches’ shapes.

Variables v11 to v13 were generated from the ellipse overlaid around 63% of the 
occupied cells in one ER to summarize the dispersion and directional trends of the occupied 
cells (Standard Deviational Ellipse tool in ArcGIS): v11 corresponds to the perimeter; v12, 
to the area; and v13, to the eccentricity of the ellipse. Eccentricities close to zero indicate 
a circular occupation pattern, while values close to 1 suggests the distribution of occupied 
cells occurs along an axis or vector, such as a watercourse.

TABLE 1 
Extractive reserve (ER) population variables, 2010

Theme Variable (v) Description

# Name

Ar
ea

 a
nd

 
po

pu
la

tio
n 

siz
e

1 Cells Total number of cells in the Statistical Grid corresponding to the 
Extractive Reserve. 

2 Resident population Total number of people living in the ER.

Co
nc

en
tra

tio
n

3 Occupied cells Number of cells with resident population greater than zero.

4 Proportion of occupied 
cells

Ratio between the number of occupied cells (v3) and the total 
number of cells in the ER (v1). Number between 0 and 1.

5 Gini index - all cells Sparsity measure of the spatial distribution of the population, 
computed based on all cells, including those without population. 
Number between 0 and 1.

6 Gini index – occupied 
cells

Sparsity measure of the spatial distribution of the population, 
computed only with cells with resident population greater than 
zero. 

7 Population density Ratio between Resident Population (v2) and the total number of 
cells in the Extractive Reserve (v1). Number between 0 and 1.

Di
sp

er
sio

n 8 Patches of occupied cells Number of cells patches with population greater than zero. 

9 Median patch size of 
occupied cells

Median size of the patches of occupied cells. 

Oc
cu

pa
tio

n 
sh

ap
e

10 Mean shape index of 
occupied cells

Measure of the regularity of the shape of the patches. Number 
equal to or greater than 1. The higher the MSI, the more irregular 
the shape of each patch.

11 Standard deviational 
ellipse – perimeter

Perimeter of the ellipse that aggregates 63% of the occupied cells, 
weighted by the resident population in each cell. The larger the 
perimeter, the greater the occupation (ArcGIS, Standard Deviational 
Ellipse - SDE). 

12 Standard deviational 
ellipse – area

Area of the SDE that aggregates 63% of the occupied cells, 
weighted by the resident population in each cell. 

13 Standard deviational 
ellipse – eccentricity

Ratio between the two axes of the SDE that aggregates 63% of the 
occupied cells, weighted by the resident population in each cell. 

Source: Variables defined and calculated by the authors.
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The variables in the External Conditions group (Table 2) were computed for each ER 
to verify whether the characteristics of the surrounding areas impact land cover within 
the reserve. The surrounding population (v14) was calculated for the 10km buffer around 
each reserve, encompassing a total of 79,526 cells from the 2010 demographic statistical 
grid. The surrounding forest cover (v15) corresponds to the percentage of forest within the 
10km buffer zone around the ER, based on the 2010 TerraClass land cover classification. 
The surrounding protected areas (v16) represent the percentage of the 10km buffer around 
the ER occupied by some type of protected area (including indigenous lands), as per the 
2010 official map of protected areas. The distance to the nearest urban area (v17) measures 
the shortest straight-line distance from the ER to the nearest urban area (patch of cells 
classified as urban by IBGE), even if it is outside the 10km buffer. The distance to the five 
closest urban areas (v18) considers the average distances to these five areas.

TABLE 2 
External conditions variables, 2010

Theme Variable (v) Description

# Name

Po
pu

la
tio

n 14 Surrounding population Resident population in the 10km buffer around the ER.

Fo
re

st
 

co
ve

r 15 Surrounding forest cover Percentage of the 10km buffer around the ER, with forest cover.

Pr
ot

ec
te

d 
ar

ea
s 16 Surrounding protected 

areas
Percentage of the 10km buffer around the ER occupied by some 
type of protected area.

Ur
ba

n 
ar

ea
s 17 Straight distance to 

nearest urban patch. 
Straight distance from the ER to the nearest urban patch (ArcGIS, 
Near Dist.).

18 Average distance of 
the five closest urban 
patches.

Average distance from the ER to the five closest urban patches. 

Source: Variables defined and calculated by the authors.

The variables in the Land Cover Group (Table 3) included forest fragmentation 
indicators and forest cover measurements for each ER. Fragmentation measurements, 
calculated in the Fragstats software, include number of forest patches (v19), the density 
of forest patches (v20), the number of patches per 100 hectares, the size of the largest 
patch relative to the size of the ER (v21), and the forest patches mean size (v22). Forest 
cover variables were calculated directly in ArcGIS in percentual values of the size of the 
ER: Forest Cover (v23) and Deforested Area (v24).
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TABLE 3 
ER Land cover variables, 2010

Theme
Variable (v)

Description
# Name

Fo
re

st
 

fra
gm

en
ta

tio
n 19 Forest patches Number of forest patches

20 Density of forest patches Number of forest fragments per 100 hectares

21 Forest largest patch Size of largest forest fragment in relation to the size of the Extractive 
Reserve

22 Forest patches mean size Mean of forest fragment size

Fo
re

st
 

co
ve

r 23 Forest Percentage of the Extractive Reserve with forest cover

24 Deforestation Percentage of the Extractive Reserve deforested

Source: Variables defined and calculated by the authors.

Statistical analyses

Statistical analyses were performed to test the correlations between the population 
variables and external conditions (predictor variables) and the forest cover variables 
(predicted variables). We considered the Pearson linear correlation coefficient ρx,y (Chen; 
Popovich, 2002), in which x and y represent a predictor variable (v1 to v18) and a predicted 
variable (v19 to v24), respectively. The correlation is generally assumed to be strong, 
moderate, weak, or negligible if:
|ρx,y| ≥ 0.7, 0.7 > |ρx,y| ≥ 0.5, 0.5 > |ρx,y| ≥ 0.3, or |ρx,y| < 0.3, respectively                  (1)

Regression analyses were conducted to evaluate the importance of the predictor 
variables in predicting the Number of Forest Fragments (v19) and Forest Cover Percentage 
(v23). For this study, we opted for the multiple linear regression model (Montgomery; 
Runger, 2010), where the regression line was calculated as follows:
ŷi = α + β1xi,1 + β2xi,2 + ... + β18xi,18                (2)

In which α represents the intercept with the vertical axis, β1, β2, ... β18 are the regression 
coefficients, and xi,1, xi,2, ... xi,18 are the values of the predictor variables (from v1 to v18) in 
relation to ER i, such that the estimates ŷi are as close as possible to the actual predictions 
yi. Note that ŷi (as well as yi) is either the Number of Forest Fragments (v19) or the Forest 
Cover Percentage (v23). It is worth highlighting that we defined the regression model in 
Eq. (2) based on all predictor variables v1 to v18.

From a statistical perspective, given the limited samples (31 ER) compared to the number 
of predictor variables (18), we selected a subset of variables to construct the regression 
model. To that end, we used multicollinearity observation in the data and performed a 
combinatorial analysis of several regression models with different compositions of the two 
groups of predictor variables: Resident Population (v2), Gini Index – all cells (v5), Patches of 
occupied cells (v8), Median patch size of occupied cells (v9), Mean shape index of occupied 
cells (v10), and Surrounding Forest cover (v15). 
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The regression analysis was assessed using the coefficient of determination (R2), which 
varies from 0 and 1 and indicates the percentage of variance in the predicted variable 
explained by the linear model. In addition, it is also common to interpret the importance 
of predictor variables in the coefficient of determination from the parameters β1, β2, ... β18 
of the regression model. However, in the presence of multicollinearity among the collected 
data, extracting interpretations from such parameters can be a challenging task that 
can frequently lead to erroneous conclusions (Kraha, 2012; Daoud, 2017). For instance, 
multicollinearity increases the likelihood that independent variables are classified as 
statistically insignificant even when they are important for the regression task. 

To understand the importance of each variable in R2 (Lipovetsky; Conklin, 2001) 
and overcome this limitation, we adopted an approach based on the cooperative game 
theory, aiming to provide a more accurate interpretation of the importance of each 
predictor variable. In cooperative game theory (Peleg; Sudhölter, 2007) a set of players, 
M, cooperates towards a common goal (e.g., increasing profits or reducing costs of an 
operation). The worth of a game, defined here as υ(A), indicates the payoff (or gain) 
when the coalition of players A ⊆ M act cooperatively. Recently, this game theory-based 
formulation has been borrowed by statisticians and computer scientists to interpret 
any classification and/or regression model (Lundberg; Lee, 2017; Sundararajan; Najmi, 
2020). A similar formulation can be adopted in linear regression models to evaluate 
the gain obtained in the determination coefficient for different coalitions (or subsets) of 
variables (Lipovetsky; Conklin, 2001).

In this paper, the set of predictor variables can be viewed as the players in a game. 
When these variables join in a coalition (i.e., when they are used to predict either 
v19 or v23), they cooperate to improve the quality of the regression model, measured 
through R2. Consider, for example, the use of variables v2, v5, v9, and v10 to predict 
variable v19. In this case, the subset of variables A = {v2, v5, v9, v10} are the players 
of the game and υ(A) = R2 ({v2, v5, v9, v10}) is the coefficient of determination achieved 
when the variables present in A are used to predict variable v19 (i.e., when they 
join a coalition). For any subset of variables A, there is the associated υ(A) = R2 (A). 
Furthermore, for the coalition with all the variables (i.e. A=M={v1,v2,...,v18}), it follows 
that υ({v1,v2,...,v18})=R2 ({v1,v2,...,v18})=R2, i.e. the coefficient of determination of the 
regression model with all the predictor variables. When there is no variable to predict 
v19 or v24, it is assumed that υ(Ø)=0.

The advantage of using the game theory formulation to interpret regression models lies 
in the solution concept known as the Shapley value (Shapley, 1953), which fairly distributes 
the achieved R2 among the predictor variables. In the example above and for variable v2 
(and the same reasoning applies to all other predictor variables), the associated Shapley 
value is calculated as follows:

φv2 � ΣA�M
|A|!(|M| ��|A| �1)!

|M|!
[R2(A U v2) ��R2(A)]

             
(3 )
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In which |A| indicates the number of variables in subset A (similarly for |M| that in 
this case is equal to 18). One of the interesting aspects of the Shapley value is that the 
sum of all Φj = j ∈ {v1,v2,...,v18}, is equal to the total payoff of the game. In other words, 
the Shapley values indicate the importance or portion of contribution each predictor 
variable has in the achieved coefficient of determination R2. In addition, the calculation 
of the Shapley value (3) is based on a weighted average of the marginal contribution 
of the predictor variable in the coefficients of determination. Thus, the negative effect 
of multicollinearity in the calculation of the importance of the predictor variable is 
mitigated. Therefore, to answer the questions of this study, the use of Shapley values 
leads to better interpretations of the contribution of each predictor variable regarding 
the quality of the linear regression model.

Results

Results indicated human presence combined with a significant percentage of forest cover 
in 2010. The 31 ERs encompass 120,521 cells of the statistical grid, with 91% of the total area 
having forest cover. The population living within the ERs was estimated at 83,669 inhabitants 
(44,654 men and 39,015 women) distributed along 15,774 households. The population living in 
the 10 km buffer zone (79,526 cells; 7,952,600 hectares) was estimated at 183,170 inhabitants 
distributed along 39,815 households – the damping areas around the ERs concentrated a 
population more than twice as large as the population estimated within the conservation units. 
This result is consistent with the literature (D’Antona et al., 2013).

We found three general patterns of population distribution, as illustrated in Figure 
2: dispersed, in clusters of cells, and along an axis. In the Chico Mendes ER, the dispersed 
distribution corresponded to a predominant solid ground organization. In the Cajari River, 
occupation along watercourses (to the west) combined with density in blocks to the north and 
south. In Alto Tarauacá, occupation occurred along watercourses. Visually, the distribution of 
cells with resident population tended to correspond to the distribution of non-forest areas, not 
necessarily to the same shape or area extent. The population’s settlement pattern generally 
follows the main rivers within the Reserves, shaping Amazonian history (Neves, 2022).
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FIGURE 2 
Three patterns of the spatial distribution of population and forest cover in the ERs
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Source: INPE (2022); IBGE (2016); ICMBIO (2017). Prepared by the authors.

Table 4 lists the correlations among variables of groups 1 and 2 (in rows) with variables 
of group 3 (in columns), as well as the associated P-values. Note that high standard 
deviations, combined with the low number of ERs, explain the low significances (measured 
by the P-values) of part of the correlations. However, all ERs of the Amazon Biome were 
used in the analyses; therefore, the samples used were equivalent to the entire study 
population. For result analysis, we considered correlations with a statistical significance 
level (P-value) lower than 0.10 or lower than 0.05. 
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TABLE 4 
Correlations

Variables 

Pearson correlation coefficient
(P-value)

19 20 21 22 23 24
Number 
of forest 
patches

Density 
of forest 
patches

Forest 
largest 
patch

Forest 
patch area 

mean
Forest (%) Deforestation 

(%)

1 Cells 0.485
(0.006**)

-0.334
(0.066*)

0.229
(0.216)

0.318
(0.082*)

0.323
(0.077*)

-0.190
(0.307)

2 Resident 
population

0.769
(0.000**)

0.098
(0.600)

-0.079
(0.671)

-0.252
(0.171)

-0.055
(0.768)

0.108
(0.565)

3 Occupied cells 0.653
(0.000**)

-0.053
(0.778)

-0.076
(0.684)

-0.210
(0.256)

-0.119
(0.524)

0.157
(0.400)

4 Proportion of 
occupied cells

-0.027
(0.886)

0.886
(0.000**)

-0.544
(0.002**)

-0.262
(0.155)

-0.705
(0.000**)

0.396
(0.027**)

5 Gini index – all 
cells

0.028
(0.881)

-0.641
(0.000**)

0.477
(0.007**)

0.267
(0.147)

0.617
(0.000**)

-0.539
(0.002**)

6 Gini index – 
occupied cells

0.124
(0.507)

0.349
(0.054*)

-0.191
(0.305)

-0.118
(0.526)

-0.150
(0.421)

-0.111
(0.552)

7 Population 
density

-0.125
(0.504)

0.895
(0.000**)

-0.173
(0.353)

-0.149
(0.425)

-0.467
(0.008**)

-0.025
(0.893)

8 Patches of 
occupied cells

0.525
(0.002**)

-0.097
(0.603)

0.022
(0.909)

-0.129
(0.488)

0.156
(0.403)

-0.016
(0.932)

9 Median patch 
size of occupied 
cells

0.532
(0.002**)

0.477
(0.007**)

-0.391
(0.030**)

-0.259
(0.159)

-0.430
(0.016**)

0.142
(0.447)

10 Mean shape 
index of occupied 
cells

0.324
(0.075*)

0.351
(0.053*)

-0.369
(0.041**)

-0.356
(0.050**)

-0.364
(0.044**)

0.602
(0.000**)

11 SDE – perimeter 0.254
(0.169)

-0.345
(0.058*)

0.205
(0.270)

0.142
(0.446)

0.349
(0.055*)

-0.160
(0.392)

12 SDE – area 0.501
(0.004**)

-0.234
(0.205)

0.135
(0.468)

-0.021
(0.911)

0.176
(0.345)

-0.123
(0.510)

13 SDE – 
eccentricity

0,561 
(0.001**)

0,080 
(0,669)

-0,106 
(0,572)

-0,353 
(0,051*)

-0,223 
(0,227)

0,235 
(0,202)

14 Surrounding 
population

0.302
(0.099*)

0.436
(0.014**)

-0.084
(0.655)

-0.213
(0.251)

-0.347
(0.056*)

-0.009
(0.960)

15 Surrounding 
forest cover

-0.430
(0.016**)

-0.595
(0.000**)

0.407
(0.023**)

0.300
(0.102)

0.742
(0.000**)

-0.131
(0.482)

16 Surrounding 
protected areas

-0.301
(0.100)

-0.270
(0.142)

0.247
(0.181)

0.814
(0.000**)

0.324
(0.075*)

-0.235
(0.203)

17 Distance to 
nearest urban 
patch

-0.386
(0.032**)

-0.351
(0.053*)

0.280
(0.127)

0.506
(0.004**)

0.362
(0.045**)

-0.209
(0.258)

18 Distance of the 
five closest urban 
patches

-0.228
(0.217)

-0.354
(0.051*)

0.287
(0.118)

0.197
(0.289)

0.484
(0.006**)

-0.139
(0.456)

Source: INPE (2022); IBGE (2016); ICMBIO (2017). Prepared by the authors. 
Note. *p<0.10, **p<0.05

Correlations served as the starting point to analyze the influence of the population 
on both the extent of forest cover and forest fragmentation. It was complemented by the 
use of linear regression models combined with a game theory framework to interpret the 
impact of selected predictor variables on the quality of the predicted number of forest 
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patches (v19) and the percentage of ERs with forest (v23), based on the obtained Shapley 
values Φj, for all variables j.

Population and extension of the forest cover

The size of the ER (v1) had a weak positive correlation with the percentage of forest cover 
within it (v23). Resident population (v2) does not significantly correlate with forest cover (v23) 
and deforested area. The number of occupied cells (v3) also had no correlation with forest cover. 
Variables expressing occupation in absolute terms appear less relevant than those measuring 
population size and occupation relative to ER size: the proportion of occupied cells (v4) had 
strong negative correlation with forest (v23) and a weak positive with deforestation (v24). 
Population density (v7) had only a moderate negative correlation with forest cover (v23). The 
larger the occupied area – and the higher the density – in the ER, the lower the forest cover. 
These findings surpass earlier studies, demonstrating that population size and occupied area 
alone do not fully explain variations in forest cover or deforestation (Barbieri, 2024; Côrtes; 
D’Antona, 2014; Ferreira et al., 2005; Ferretti-Gallon; Busch, 2914).

Greater inequality in population concentration appears to be linked to a higher forest cover 
and lower deforestation percentage. The Gini index for all cells (v5) demonstrated a moderate 
positive correlation with forest cover (v23) and a negative correlation with deforestation (v24); 
while the Gini index for occupied cells (v6) did not show any significant correlations. On the other 
hand, the number of patches of occupied cells (v8) did not have a significant correlation, while 
the median patch size of occupied cells (v9) exhibited a weak to moderate negative correlation 
with forest proportion (v24). In other words, and contrary to expectations, a larger number and 
size of occupied patches did not show a substantial relationship with lower forest covers. This 
suggests that the concentration of population across the entire territory is more significant than 
population size or the number of occupied patches. 

The occupation shape variables did not show strong correlations either. The mean 
shape index (v10) had a weak negative correlation with forest cover (v23) and a moderate 
positive correlation with deforestation (v24). Greater geometry complexity was associated 
with lower forest proportion and higher deforestation. The complexity affects the perimeter 
of the patch with population occupation, increasing the zone of influence. Considering 
the indicators based on the standard deviation ellipse, the only significant correlation 
is that between the perimeter of the ellipse (v11) and the percentage of forest in the ER  
(v23 – weak, positive).

The correlations indicated that analyses focused solely on population and ER size 
may be insufficient, as the strongest correlations observed are from variables related 
to population concentration concerning v23. The importance of considering the context 
around reserves is also highlighted. The entire set of external condition variables showed 
a correlation with the proportion of forest conservation within the ER (v23), although 
none of them was associated with deforestation (v24). The isolation of an ER by protecting 
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its surrounding areas is essential for forest conservation within these territories. The 
population in the buffer zone (v14) exhibited a weak negative correlation with the forest 
proportion (v23). The forest cover percentage in the surrounding area (v15) had a strong 
positive correlation, while the presence of a protected area in the buffer zone (v16) showed 
a weak positive correlation. Variables related to the effect of urban areas around the ER 
(v17 and v18) both showed positive correlations.

The results indicated that forest cover is influenced by the spatial arrangement of the 
population and, to a lesser extent, by population size (Table 5). This is a key finding and makes an 
important and novel contribution to literature. Among the predictive models of v23 (Percentage 
of Forest Cover), the inclusion of population volume (v2) in M3 negatively impacted the quality 
of the model based on M1 (R2=0.600 decrease to R2=0.268). The proportion of forest in the 
buffer zone (v15) had a strong significant contribution on R2

v23. The R2 increase to 0.681 in M4, 
highlighting the primary role of external drivers’ forces. The replacement of population volume 
(v2) with Gini index – all cells (v5) in M2 again indicated the need to attempt more complex forms 
of population occupation in land use science. The R2 increased to 0.747 in M2, the best model 
for forest landscape. In this model, the most relevant variable was the Gini index – all cells (v5) 
and the external variable (v15), with the higher coefficient. 

TABLE 5 
Regression models and Shapley values for forest cover percentage (v23)

Model
(R2

v23)
Measures

Predictor variables

v2 v5 v8 v9 v10 v15

Resident 
population

Gini index 
– all cells

Patches of 
occupied 

cells

Median 
patch size 

of occupied 
cells

Mean shape 
index of 

occupied 
cells

Surrounding 
forest cover

M1
(0.600)

Φ - 0.340 0.022 0.155 0.083 -

P-value - 0.000** 0.196 0.002** 0.016** -

M2
(0.747)

Φ - 0.227 0.038 0.082 0.056 0.344

P-value - 0.002** 0.035** 0.174 0.077* 0.001**

M3
(0.268)

Φ 0.023 - 0.015 0.151 0.079 -

P-value 0.266 - 0.967 0.048** 0.269 -

M4
(0.681)

Φ 0.040 - 0.022 0.086 0.059 0.474

P-value 0.182 - 0.912 0.051* 0.522 0.198

Source: INPE (2022); IBGE (2016); ICMBIO (2017). Prepared by the authors 
Note. *p<0.10, **p<0.05.
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The Shapley value analysis proves useful in these results. While the correlation 
coefficient between v9 and v23 (-0.430, in Table 4) might suggest a high impact of v9 on 
predicting forest cover, multicollinearity reduces its marginal contribution (as shown by 
its Shapley value). This underscores the advantage of using a complex strategy to achieve 
interpretability in scenarios where data structure could lead to misleading conclusions.

These findings advance the literature on population’s role in deforestation (Becker, 
2001; De Filho; Metzger, 2006; Côrtes; Silva Júnior, 2021), showing that beyond population 
size, spatial organization significantly correlates with deforestation, enriching discussions 
on land use and cover. Demographic factors, often viewed as secondary to macrostructural 
influences like political and economic conditions (Lambin; Geist, 2006; Côrtes; D’Antona, 
2014), gain new relevance here. While population size and growth – widely studied 
attributes (Bremner et al., 2010; DeFries et al., 2010; Geist; Lambin, 2001; Jorgenson; 
Burns, 2007; Maja; Ayano, 2021; Martin, 2023) – show limitations, spatial indicators 
emerge as more promising. Distribution across the territory, impacting variables such as 
the Gini index, population concentration, occupied cell proportion, and average occupied 
patch size, are critical for understanding forest cover and deforestation. These insights 
open fresh perspectives for existing research.

Population and forest fragmentation

The presented analyses on the relationship between population indicators and 
forest fragmentation are rare in the literature, offering a new perspective by proposing 
spatial parameters and emphasizing the need to examine demographic impacts on forest 
fragmentation beyond deforestation. The number of cells (v1) had a moderate positive 
correlation with the number of forest patches (v19), a weak positive correlation with the 
forest patch mean size (v22), and a weak negative correlation with the density of forest 
patches (v20): the larger the ER, the greater the forest fragmentation and the mean size 
of the fragments, and the lower the density of the fragments. The resident population (v2) 
and the number of occupied cells (v3) showed a significant strong positive correlation only 
with the number of forest fragments (v19): the larger the population size and occupation 
extent of the ER, the more fragmented the forest cover. This result is intriguing as it reveals, 
in a novel way, that although population volume does not directly affect the deforested 
area or remaining forest cover in these territories, it impacts the environment through 
the effects of forest fragmentation – including impacts on biodiversity and the ecological 
function of the forest (Haddad et al., 2015; Laurance et al., 1998; Martínez-Ramos et al., 
2016; Metzger, 2021).

The Proportion of occupied cells (v4) and Population density (v7) – relative measures of 
occupation and population size – showed a strong positive correlation with forest fragment 
density (v20), suggesting that relatively more extensive and dense occupation corresponded 
to lower forest connectivity. The v4 also exhibited a moderate negative correlation with 
the largest forest patch (v21): the greater the proportion of the ER with occupied cells, 
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the smaller the size of the largest forest fragment relative to the size of the ER itself. This 
result goes beyond previous studies, showing that population density and the proportion 
of area occupied have a dual impact on forest, affecting not only forest extent but also the 
forest structure.

The Gini index – all cells (v5) had a moderate negative correlation with the density of 
the forest patches (v20) and a positive moderate correlation with the forest largest patch 
(v21), while the Gini index – occupied cells (v6) showed only a weak positive correlation 
with v20. The higher the inequality in the distribution of the population in the ER (higher 
concentration), the lower the number of fragments per 100 hectares and the larger the size 
of the largest forest fragment in relation to the size of the ER. Considering only the occupied 
cells, the higher the population concentration (a tendency toward clustering), the greater 
the density of forest patches. This means that more dispersed population patterns within 
the occupied area reduce the fragmentation process, a finding that expands upon previous 
studies and provides valuable insight into the effects of infrastructure on land cover change, 
in shaping population distribution patterns (Assunção; Chiavari, 2015; França et al., 2021; 
Milien et al., 2021; Perz et al., 2013).

The number of patches of occupied cells (v8) had only a positive correlation with the 
number of forest patches (v19). The median patch size of occupied cells (v9) exhibited a 
moderate and positive correlation with the number (v19) and the density (v20) of forest 
patches, and a weak negative correlation with the largest forest patch (v21). The greater 
the number of patches of occupied cells – and the larger the patches – the higher the forest 
fragmentation and patch density, and the smaller the size of the largest forest fragment. 
This finding converges to the results on the proportion of occupied cells (v4) and Gini 
Index – all cells (v5). 

Regarding the set of variables related to occupation shape, the mean shape index of 
occupied cells (v10) showed weak correlations with all forest fragmentation variables: 
the more complex the patches of occupied cells, the larger the number (v19) and density 
(v20) of forest patches, and the smaller the size of the largest forest fragment (v21) and 
the mean area of the fragments (v22). Geometry complexity associated with landscape 
connectivity increases forest fragmentation effects, as reductions in area, isolation and 
edge effect (Haddad et al., 2015; Laurance; Vasconcelos, 2009). Considering indicators 
based on the standard deviation ellipse, the perimeter of the ellipse (v11) had a weak 
negative correlation with the density of forest patches (v20), the ellipse area (v12) 
showed a moderate positive correlation with the number of forest patches (v19), while 
eccentricity (v13) had a moderate positive correlation with v19: the more concentrated 
the occupied area along an axis, the higher the forest fragmentation; the larger the 
occupied area, the greater the number of forest fragments. This finding converges to the 
results on the Gini Index – occupied cells (v6), suggesting that population concentration 
and geometry in settlement areas increase the likelihood of forest fragmentation, 
offering new insights into previous studies about deforestation patterns and spatial 
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population settlement, such as fishbone pattern or urbanization (Becker, 2001; 
Browder; Godfrey, 1997; Côrtes; Silva Júnior, 2021).

External conditions also yielded significant correlations, indicating that isolation 
positively impacts the contiguity of forest cover in the ER. The total population in the buffer 
zone (v14) had a weak positive correlation with both the number of forest patches (v19) 
and the density of forest patches in the ER (v20). Other aspects showed more pronounced 
correlations. The forest cover percentage in the surrounding area (v15) had a significant 
correlation with nearly all forest fragmentation variables in the ER. This variable presented 
a moderate negative correlation with the number (v19) and density (v20) of forest patches, 
and a weak positive correlation with the largest forest patch (v21); meanwhile, the existence 
of a protected area in the buffer zone (v16) had a strong positive correlation with the 
mean area of forest patches in the ER (v22). In relation to the proximity of urban areas, 
the distance to the nearest urban patch (v17) had a weak negative correlation with forest 
fragmentation – number (v19) and density (v20) – and a positive correlation with the mean 
area of forest patches (v22), while the distance of the five closest urban patches had a weak 
negative correlation only with the density of forest patches (v20). These findings align with 
previous research, confirming the effects of urban areas on land use and cover change, 
while enhancing our understanding of how the connectivity and geometry of extended 
urbanization impact forest structure (Browder; Godfrey, 1997; Côrtes; Silva Júnior, 2021).

The results indicate that the size and spatial distribution of the population are important 
for understanding forest fragmentation and the distribution of forest patches. In fact, for 
predicting the number of forest fragmentation, we found that population volume had a 
limited contribution, while the spatial configurations of population occupation offered 
more consistent effects – population dispersion, concentration, and geometry. This is a 
key finding that goes beyond previous studies and aligns with results obtained from forest 
cover proportion models. 

The predictive models for the Number of Forest Fragments (Table 6), v2 (resident 
population) contributed significantly to R2

v19 when comparing M1 (R2 0.660) with M3 
(R2 0.672). This suggests that the total population in the ER impacted on the quality of 
prediction of the number of forest fragmentation. The model M3 showed improvement when 
the variable of forest proportion on buffer zone (v15) in M4 was included, highlighting the 
significance of external forces. In this situation, population size ceased to be statistically 
significant. Despite the increase in R2, both M3 and M4 presented predictor variables with 
weak significance values. When the population size (v2) was replaced with the Gini index 
– all cells (v5), presented in the M2, we achieved the best R2 value (0.724) with strong 
significances. In this model, the most important variable was the patches of occupied cells 
(V8) and the variable with no significant effect was Mean Patch Size of occupied cells (V9).

As in the results for forest cover percentage, by comparing the correlation coefficients 
from Table 4 and the contributions of features from Table 6, one may confirm the benefit 
brought by the Shapley value analysis. The marginal contributions highlighted the impact 
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of variables v8 and v15, even if v5 and v10 are the only ones highly correlated with the 
number of forest fragments.

The significant correlations between population variables (size, concentration, 
dispersion, and shape of occupation) and forest fragmentation variables indicate that as 
the occupation became larger and more complex, the forest cover in the ER became more 
fragmented. Beyond the use of absolute measures (population size; occupied area) and 
relative measures (population density; proportion of occupied area), our work proves the 
significance of including variables related to population spatial distribution in LUCC studies. 
Although space is a current topic in Population and Environment (Cortes; D’Antona, 2014), 
this study provided empirical evidence of the importance of incorporating this dimension 
into demographic parameters.

TABLE 6 
Regression models and Shapley values for the number of forest fragments (v19)

Model
R2
v19

Measures

Predictor variables
v2 v5 v8 v9 v10 v15

Resident 
population

Gini index – 
all cells

Patches of 
occupied 

cells

Median 
Patch Siz4e 
of occupied 

cells

Mean shape 
index of 

occupied 
cells

Surrounding 
forest cover

M1
(0.660)

Φ - 0.051 0.293 0.210 0.106 -
P-value - 0.020** 0.000** 0.009** 0.021** -

M2
(0.724)

Φ - 0.080 0.268 0.156 0.110 0.110
P-value - 0.002** 0.000** 0.265 0.003** 0.023**

M3
(0.672)

Φ 0.322 - 0.170 0.139 0.041 -
P-value 0.012** - 0.034** 0.111 0.623 -

M4
(0.676)

Φ 0.301 - 0.163 0.117 0.035 0.060
P-value 0.806 - 0.557 0.877 0.912 0.995

Source: INPE (2022); IBGE (2016); ICMBIO (2017). Prepared by the authors. 
Note. *p<0.10, **p<0.05

Aligning the results obtained for fragmentation with those of forest cover extent reveals 
the set of concentration variables suggests a convergence between the Gini index – all 
cells (v5) with the proportion of occupied cells (v4) and population density (v7). Overall, 
this means that the larger the occupation area, the smaller the concentration, directly 
affecting land cover with more deforestation and less forest extent, beyond fragmentation 
(increases the forest patches density and reduces the forest largest patch). Dispersion 
metrics indicate that the spatial arrangements of the population also affect forest extent 
and fragmentation. The number and size of patches with population increased the likelihood 
of forest fragmentation and decreased forest extent. The shape of occupation also seemed 
relevant: greater complexity in the shape of the occupation may increase fragmentation and 
decrease the extent of forest cover, while a more scattered distribution of the population 
along an axis appeared to reduce forest cover change.
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The results indicate the relevance of interdisciplinary collaboration between 
population and environmental studies as it addresses the role of population distribution 
and density in forest fragmentation, a model still scarce in the literature. On the 
other hand, forest fragmentation is an environmentally significant phenomenon for 
biodiversity studies (Laurance et al., 1998; Martínez-Ramos et al., 2016), yet its 
incorporation into population studies is still low. Besides, establishing connections 
between population spatial distribution and forest fragmentation brings valuable 
contributions to Environmental Sciences. Considering that, the use of landscape ecology 
metrics (Metzger et al., 2021) has shown to be promising, as it enables the integration of 
population variables with environmental variables at multiple levels of analysis.

Conclusions

Population size and spatial distribution were related to land cover and forest 
fragmentation in ER. The concentration, dispersion and geometry of population distribution 
– as well as population size – contributed to understanding deforestation and forest 
conservation, as well as the landscape structure. The regression models and calculation of 
the Shapley values revealed the role of external forces but specifically indicated that forest 
fragmentation and forest cover extent are not necessarily related processes or defined by the 
same population aspects. The models suggest that forest cover change is demographically 
driven mostly by the population concentration on the Reserve, while forest fragmentation is 
highly shaped by population dispersion – and the geometry of population patches should 
be considered in both processes.

The case study highlights the importance of incorporating forest spatial distribution 
measures into the Population and Environment research, beyond the traditional focus 
on forest extent. From the same perspective, we assert the significance of working with 
spatial demographic variables, going beyond conventional approaches centered on 
population size. The contribution to Population and Environment and Land Use Sciences 
also involved emphasizing the significance of including external variables, particularly 
in studying demographic aspects of protected areas, such as population size and urban 
concentrations, counterbalance barriers to occupation (forests and protected areas in 
the buffer zone), resulting in different levels of protection of the natural cover within the 
reserves.

The proposed methodology based on the use of the IBGE Statistical Grid has proven 
promising to analyze the relationship between population and forest cover. However, 
it is important to highlight the analytical limitations resulting from the unavailability of 
information in the data sources, which vary in update frequency and seasonality. In future 
studies, we intend to expand the analysis to other categories of conservation units, not 
only broadening the theoretical perspective on the diversity of population occupations 
in the Amazon but also ensuring a larger sample volume for analysis. New investigative 
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approaches will allow for further exploration of the findings of this study, incorporating 
fresh insights into the relationship between population and environment within the context 
of Amazonian sociobiodiversity conservation.
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Resumo

Distribuição espacial da população e cobertura florestal em reservas extrativistas no bioma 
amazônico, Brasil

Este estudo relaciona medidas espaciais de cobertura florestal com medidas de distribuição 
espacial da população nas 31 reservas extrativistas (REs) dentro do bioma amazônico, Brasil, 
em 2010. Integramos camadas de informações sobre as REs, cobertura florestal e distribuição 
espacial da população em um Sistema de Informação Geográfica. Produzimos 24 variáveis em 
três grupos: população; condições externas (ambas como variáveis preditoras); e cobertura da 
terra (variáveis previstas). Avaliamos se as variáveis preditoras estão correlacionadas com as 
variáveis de cobertura florestal e fragmentação florestal. Análises de regressão linear baseadas 
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na teoria dos jogos cooperativos foram realizadas para entender a importância das variáveis 
preditoras na previsão do número de fragmentos florestais e do percentual de cobertura florestal 
nos modelos. Verificou-se que o tamanho, a concentração, a dispersão e a geometria da população 
contribuíram para a compreensão do desmatamento, bem como da estrutura da paisagem. No 
entanto, a fragmentação florestal e a extensão da cobertura florestal não são necessariamente 
definidas pelos mesmos aspectos populacionais. Os modelos sugerem que a mudança na cobertura 
florestal é principalmente impulsionada pela concentração da população na RE, enquanto a 
fragmentação florestal é altamente moldada pela dispersão populacional. O papel das condições 
externas (florestas circundantes e áreas protegidas) também foi relevante. Nosso estudo destaca 
a importância de incorporar medidas de distribuição espacial das florestas na pesquisa sobre 
população e meio ambiente, além do foco usual na extensão florestal. Também mostra a relevância 
de trabalhar com variáveis demográficas espaciais, indo além do enfoque convencional centrado 
no tamanho da população.

Palavras-chave: Distribuição espacial. Áreas protegidas. LUCC. Fragmentação florestal. Regressão 
linear. Valor de Shapley.

Resumen

Distribución espacial de la población y cobertura forestal en reservas extractivas en el bioma 
amazónico, Brasil

Este estudio relaciona las medidas espaciales de la cobertura forestal con las de la distribución 
espacial de la población en las 31 reservas extractivas (REs) dentro del bioma amazónico, Brasil, en 
2010. Para ello, integramos capas de información sobre las REs, la cobertura forestal y la distribución 
espacial de la población en un sistema de información geográfica (SIG). Generamos 24 variables 
en tres grupos: población; condiciones externas (ambas como variables predictoras); y cobertura 
terrestre (variable predicha). Evaluamos si las variables predictoras están correlacionadas con las 
variables de cobertura y de fragmentación forestal. Se hicieron análisis de regresión lineal basados 
en la teoría de juegos cooperativos para comprender la importancia de las variables predictoras 
en la predicción del número de fragmentos forestales y del porcentaje de cobertura forestal en los 
modelos. Así. encontramos que el tamaño, la concentración, la dispersión y la geometría de la 
población contribuyeron a comprender la deforestación y la estructura del paisaje. Sin embargo, 
la fragmentación forestal y la extensión de la cobertura forestal no están necesariamente definidas 
por los mismos aspectos de la población. Los modelos sugieren que el cambio en la cobertura 
forestal está impulsado sobre todo por la concentración de la población en la RE, mientras que la 
fragmentación forestal está altamente influenciada por la dispersión de la población. El papel de 
las condiciones externas (bosques circundantes y áreas protegidas) también fue relevante. Nuestro 
estudio destaca la importancia de incorporar medidas de distribución espacial de los bosques en 
la investigación sobre población y medioambiente, más allá del enfoque habitual en la extensión 
forestal. También muestra la importancia de trabajar con variables demográficas espaciales, más 
allá del enfoque convencional centrado en el tamaño de la población.

Palabras clave: Distribución espacial. Áreas protegidas. LUCC. Fragmentación forestal. Regresión 
lineal. Valor de Shapley.
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